3.978 \(\int \frac {a b B-a^2 C+b^2 B \sec (c+d x)+b^2 C \sec ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=212 \[ \frac {2 C \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{d}-\frac {2 \sqrt {a+b} (b B-a C) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{a d} \]

[Out]

2*C*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))
/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/d-2*(B*b-C*a)*cot(d*x+c)*EllipticPi((a+b*sec(d*x+c))^(1/2)/(a+b)
^(1/2),(a+b)/a,((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)
/a/d

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 212, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 50, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {24, 3921, 3784, 3832} \[ \frac {2 C \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{d}-\frac {2 \sqrt {a+b} (b B-a C) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{a d} \]

Antiderivative was successfully verified.

[In]

Int[(a*b*B - a^2*C + b^2*B*Sec[c + d*x] + b^2*C*Sec[c + d*x]^2)/(a + b*Sec[c + d*x])^(3/2),x]

[Out]

(2*Sqrt[a + b]*C*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b
*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/d - (2*Sqrt[a + b]*(b*B - a*C)*Cot[c +
d*x]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c +
 d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(a*d)

Rule 24

Int[(u_.)*((a_) + (b_.)*(v_))^(m_)*((A_.) + (B_.)*(v_) + (C_.)*(v_)^2), x_Symbol] :> Dist[1/b^2, Int[u*(a + b*
v)^(m + 1)*Simp[b*B - a*C + b*C*v, x], x], x] /; FreeQ[{a, b, A, B, C}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0] &&
 LeQ[m, -1]

Rule 3784

Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(2*Rt[a + b, 2]*Sqrt[(b*(1 - Csc[c + d*x])
)/(a + b)]*Sqrt[-((b*(1 + Csc[c + d*x]))/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Csc[c + d*x]]/Rt[a
+ b, 2]], (a + b)/(a - b)])/(a*d*Cot[c + d*x]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 3832

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*Rt[a + b, 2]*Sqr
t[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Csc[e + f*x]))/(a - b))]*EllipticF[ArcSin[Sqrt[a + b*Csc[e +
f*x]]/Rt[a + b, 2]], (a + b)/(a - b)])/(b*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3921

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c, In
t[1/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[d, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a,
b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {a b B-a^2 C+b^2 B \sec (c+d x)+b^2 C \sec ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx &=\frac {\int \frac {b^2 (b B-a C)+b^3 C \sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{b^2}\\ &=(b C) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx+(b B-a C) \int \frac {1}{\sqrt {a+b \sec (c+d x)}} \, dx\\ &=\frac {2 \sqrt {a+b} C \cot (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{d}-\frac {2 \sqrt {a+b} (b B-a C) \cot (c+d x) \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 3.03, size = 158, normalized size = 0.75 \[ \frac {4 \cos ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\frac {\cos (c+d x)}{\cos (c+d x)+1}} \sec (c+d x) \sqrt {\frac {a \cos (c+d x)+b}{(a+b) (\cos (c+d x)+1)}} \left ((a C+b (C-B)) F\left (\sin ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )+2 (b B-a C) \Pi \left (-1;\sin ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )\right )}{d \sqrt {a+b \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a*b*B - a^2*C + b^2*B*Sec[c + d*x] + b^2*C*Sec[c + d*x]^2)/(a + b*Sec[c + d*x])^(3/2),x]

[Out]

(4*Cos[(c + d*x)/2]^2*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*
x]))]*((a*C + b*(-B + C))*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + 2*(b*B - a*C)*EllipticPi[-1,
ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)])*Sec[c + d*x])/(d*Sqrt[a + b*Sec[c + d*x]])

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*b*B-a^2*C+b^2*B*sec(d*x+c)+b^2*C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {C b^{2} \sec \left (d x + c\right )^{2} + B b^{2} \sec \left (d x + c\right ) - C a^{2} + B a b}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*b*B-a^2*C+b^2*B*sec(d*x+c)+b^2*C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((C*b^2*sec(d*x + c)^2 + B*b^2*sec(d*x + c) - C*a^2 + B*a*b)/(b*sec(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

maple [A]  time = 1.82, size = 289, normalized size = 1.36 \[ -\frac {2 \sqrt {\frac {b +a \cos \left (d x +c \right )}{\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \left (1+\cos \left (d x +c \right )\right )^{2} \left (-1+\cos \left (d x +c \right )\right ) \left (B \EllipticF \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, \sqrt {\frac {a -b}{a +b}}\right ) b -2 B \EllipticPi \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, -1, \sqrt {\frac {a -b}{a +b}}\right ) b -C \EllipticF \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, \sqrt {\frac {a -b}{a +b}}\right ) a -C \EllipticF \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, \sqrt {\frac {a -b}{a +b}}\right ) b +2 C \EllipticPi \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, -1, \sqrt {\frac {a -b}{a +b}}\right ) a \right )}{d \left (b +a \cos \left (d x +c \right )\right ) \sin \left (d x +c \right )^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*a*b-a^2*C+b^2*B*sec(d*x+c)+b^2*C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x)

[Out]

-2/d*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a
+b))^(1/2)*(1+cos(d*x+c))^2*(-1+cos(d*x+c))*(B*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b-2*B
*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*b-C*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)
/(a+b))^(1/2))*a-C*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b+2*C*EllipticPi((-1+cos(d*x+c))/
sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*a)/(b+a*cos(d*x+c))/sin(d*x+c)^2

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*b*B-a^2*C+b^2*B*sec(d*x+c)+b^2*C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\frac {B\,b^2}{\cos \left (c+d\,x\right )}-C\,a^2+\frac {C\,b^2}{{\cos \left (c+d\,x\right )}^2}+B\,a\,b}{{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((B*b^2)/cos(c + d*x) - C*a^2 + (C*b^2)/cos(c + d*x)^2 + B*a*b)/(a + b/cos(c + d*x))^(3/2),x)

[Out]

int(((B*b^2)/cos(c + d*x) - C*a^2 + (C*b^2)/cos(c + d*x)^2 + B*a*b)/(a + b/cos(c + d*x))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ - \int \left (- \frac {B b}{\sqrt {a + b \sec {\left (c + d x \right )}}}\right )\, dx - \int \frac {C a}{\sqrt {a + b \sec {\left (c + d x \right )}}}\, dx - \int \left (- \frac {C b \sec {\left (c + d x \right )}}{\sqrt {a + b \sec {\left (c + d x \right )}}}\right )\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*b*B-a**2*C+b**2*B*sec(d*x+c)+b**2*C*sec(d*x+c)**2)/(a+b*sec(d*x+c))**(3/2),x)

[Out]

-Integral(-B*b/sqrt(a + b*sec(c + d*x)), x) - Integral(C*a/sqrt(a + b*sec(c + d*x)), x) - Integral(-C*b*sec(c
+ d*x)/sqrt(a + b*sec(c + d*x)), x)

________________________________________________________________________________________